Raggi cosmici e antimateria Teoria e modelli

Nicola Tomassetti

Università degli Studi di Perugia

Ciclo PHP2020 Physics Highlights Perugia 15 Dicembre 2020 @ Perugia, Italy

Istituto Nazionale di Fisica Nucleare – Sezione di Perugia Università di Perugia / C.R.I.S.P. ASI-UniPG 2019-2-HH.0

Raggi cosmici e antimateria: teoria e modelli

Nicola Tomassetti

Composizione chimica dei raggi cosmici → Praticamente tutta la tavola periodica

Componenti principali, di materia

- ~ 85 % nuclei di idrogeno, cioè protoni
- ~ 10 % nuclei di elio, o particelle alfa
- ~ 1 % nuclei più pesanti: C, O, Si, Fe...
- ~1 % di elettroni , uno ogni 100 protoni

Componenti rare, di antimateria

- Positroni: uno ogni 1000 protoni
- Anti-protoni: uno ogni 10000 protoni
- Anti-nuclei? Non (ancora) osservati

Dalle collisioni tra raggi cosmici e gas interstellare Dall'annichilazione di WIMP Particelle di Materia Oscura

Dalle collisioni tra raggi cosmici e gas interstellare

Composizione della Galassia

Composizione dei Raggi Cosmici

Materia oscura nella Galassia

Dall'annichilazione di WIMP Particelle di Materia Oscura nell'Alone Oscuro

Weakly Interactive Massive Particles: WIMPs

X X X X X X X X X X X X X X

x x ^x x x x ^x ^x ^x ^x

X X X X X X X X X X

X X X X X X X X X

Dark

Weakly Interactive Massive Particles: WIMPs

Dark halo

SM SM

Annichilazione Wimp-Wimp

 $\chi \chi \longrightarrow (...) \longrightarrow e^{\pm}, \overline{p}, \overline{d}, \overline{He}$

Messaggeri per la ricerca di WIMP

Photons: annihilation in Galactic center, halos, secondary emission

Fermi, IACT, Radio tel.

Neutrinos: annihilation in GC or massive bodies

SuperKK, Icecube, Antares

Positron & electrons: annihilation in galactic halo (nearby) AMS, PAMELA, FERMI, DAMPE, CALET

Dalle collisioni tra raggi cosmici e gas interstellare

Dall'annichilazione di WIMP Particelle di Materia Oscura

Dalle collisioni tra raggi cosmici e gas interstellare

Dall'annichilazione di WIMP Particelle di Materia Oscura $\chi\chi \rightarrow (...) \rightarrow e^{\pm}, \overline{p}, \overline{d}, \overline{He}$

flux

Dalle collisioni tra raggi cosmici e gas interstellare

Dall'annichilazione di WIMP Particelle di Materia Oscura $\chi\chi \longrightarrow (...) \longrightarrow e^{\pm}, \overline{p}, \overline{d}, \overline{He}$ **Annihilation rate** DM annihilation channels (...) WIMP mass energy

Dalle collisioni tra raggi cosmici e gas interstellare

Dall'annichilazione di WIMP Particelle di Materia Oscura $\chi\chi \rightarrow (...) \rightarrow e^{\pm}, \overline{p}, \overline{d}, \overline{He}$

-> modelli astrofisici di origine e propagazione dei RC gattici

II «modello standard» dei raggi cosmici

- Accelerazione in onde di shock delle SNRs galattiche: p-He-C-O
- Trasporto diffusivo nei campi magnetici interstellari
- Interazioni con il gas interstellare e produzione di Li-Be-B & antimateria

Spiega le principali caratteristiche osservative: spettro, composizione, anisotropie

Il «modello standard» dei raggi cosmici The equation

CR density

Steady-state $\partial \psi / \partial t \equiv 0$ Boundary conditions $\psi(\Omega) \equiv 0$

Il «modello standard» dei raggi cosmici

Accelerazione: le sorgenti dei RC

Supernova remnants: onde di shock generate dalle esplosioni di SN

- Sono le sole sorgenti galattiche capaci di accelerare RC al PeV
- Si trovano nel disco galattico. Tasso di esplosione SN: ~3/secolo
- Producono anche turbolenza interstellare

Accelerazione: le sorgenti dei Raggi Cosmici

Meccanismo Diffusive Shock Acceleration (DSA) Theory: produce lo spettro di energia a legge di potenza fino al PeV upstream downstream plasma plasma Spiega lo spettro di energia dei RC log(Q) $Q(E) \propto E^{-\nu}$

log(E)

Propagazione diffusiva

Moto Browniano delle particelle sulle irregolarità del campo magnetico galattico

Il coefficiente di diffusione cresce con l'energia delle particelle. Ciò è legato allo spettro della turbolenza interstellare.

11

$$K=rac{
u}{3}\lambda$$

Le particelle di differenti energie "sentono" irregolarità magnetiche di differenti scale spaziali.

Distribuzione delle irregolarità \rightarrow dipendenza in energia della diffusione

Propagazione diffusiva

Moto Browniano delle particelle sulle irregolarità del campo magnetico galattico

Il coefficiente di diffusione <u>cresce con l'energia delle particelle</u>. Ciò è legato allo spettro della turbolenza interstellare.

Propagazione diffusiva

Moto Browniano delle particelle sulle irregolarità del campo magnetico galattico

II flusso dei raggi cosmici segue quindi una legge di Potenza: $J(E) \approx Q/K \propto E^{-2.7}$

Collisioni RC +gas e creazione di particelle

RC= p, He, C, O... Fe Gas= H, He

C + gas → Li, Be, B	
B + 3	gas \rightarrow Li, Be
	Be + gas → Li

Collisioni RC + gas: una «sorgente» di RC secondari

$$Q_j^{sec}(E) = \sum_{gas} \sum_k n^{gas} \beta_k c$$

Migliaia di sezioni d'urto $k \rightarrow j$

$$\frac{d\sigma_{k\to j}^{gas}}{dE}\left(E_{j},E_{k}\right)$$

 $\begin{array}{l} \mbox{Meccanismo a cascata } (M_k > M_j) \\ \mbox{C + gas} \rightarrow \mbox{Li, Be, B} \\ \mbox{B + gas} \rightarrow \mbox{Li, Be} \\ \mbox{Be + gas} \rightarrow \mbox{Li} \end{array}$

Multi-step cosmic ray fragmentation

NT, Phys. Rev. D 96, 103005 (2017) [arXiv:1707.06917]

Basic predictions: secondary Li-Be-B

Collisioni e produzione di antimateria

$$Q_{j}^{\overline{p}}(E) = \sum_{gas} \sum_{k} n^{gas} \beta_{k} c \int_{E_{k}} \psi_{k}(E_{k}) \left(\frac{d\sigma_{k \to j}^{gas}}{dE} (E, E_{k}) \right) dE_{k}$$

Produzione di antimateria: reazioni CR+gas dominanti

Il fondo astrofisico di antiprotoni $\chi + \chi \longrightarrow (...) \longrightarrow e^{\pm}, \overline{p}, \overline{d}, \overline{He}$ >> Talk by M. Cirelli

Usando i rapporti nucleari (es. B/C) possiamo calibrare il fondo astrofisico di antimateria

Il fondo astrofisico di antiprotoni

Esercizio, usando un modello standard minimale (1D plain diffusion) Discrepanza tra dati e predizioni. Ma occorre una analisi delle incertezze

- Fit del rapporto B/C misurato da AMS-02
- Calibrazione dei parametri del modello

Predizione del rapporto antiprotoni/protoni)
 No fit: il modello è calibrato con il rapporto B/C

Il fondo astrofisico di antiprotoni

Fit globale Bayesiano usando un modello state-of-the-art e inclusione incertezze

Nuovi dati B/C di AMS Nuovi dati XS da LHC

MCMC

Global

Analysis

Sembra emergere una tensione tra dati e predizioni nel rapporto antiprotoni/protoni

- Uso dei dati B/C pre e post AMS (2016)
- Analisi Bayesiana via MC Markov Chain

 \rightarrow Predizione del fondo astrofisico di pbar → Leggera tensione tra modello e dati...

Antiprotoni e incertezze

Incertezze astrofisiche: vincolate dai nuovi dati di AMS-02 sui nuclei leggeri

Incertezze nucleari: vincolate dai nuovi dati p+N di LHC sulla produzione di antiprotoni

https://www.media.inaf.it/2016/12/29/nuova-tecnica-di-analisi-per-lantimateria

sviluppata grazie ai dati raccolti da ams Nuova tecnica di analisi per l'antimateria

L'accuratezza dei dati raccolti dall'esperimento AMS, a bordo della Stazione Spaziale Internazionale, ha permesso di rivelare con precisione la quantità di antimateria presente nei raggi cosmici. Un team di ricercatori ha messo a punto una nuova tecnica di analisi, grazie alla quale è possibile sviluppare previsioni dettagliate per il fondo astrofisico di antiprotoni e positroni

💄 Elisa Nichelli 🛛 📋 29/12/2016

L'esperimento Alpha Magnetic Spectrometer (AMS), a bordo della Stazione Spaziale Internazionale (ISS), è in grado di raccogliere dati di elevata accuratezza, che negli ultimi mesi hanno permesso di estrapolare nuove stime, sempre più precise, del **rapporto tra antiprotoni e protoni nei raggi cosmici provenienti dalla nostra Galassia**. Un team di ricercatori della collaborazione AMS ha sviluppato una **nuova metodologia di analisi** di questi dati, al fine di ottenere una stima robusta del fondo astrofisico di antiparticelle. I risultati, **pubblicati** in un recente studio sulla rivista *Physical Review D*,

L'esperimento Alpha Magnetic Spectrometer a bordo della Stazione Spaziale Internazionale

forniscono un nuovo sguardo sul fondo di antimateria, e sui processi che ne regolano la produzione e il trasporto all'interno della nostra Galassia.

Antinuclei: la prossima milestone

Mai osservati nei raggi cosmici [\rightarrow AMS-02, GAPS]

 $p + p \rightarrow p + p + p + n + \overline{n} + \overline{p} \rightarrow \text{coalescenza in antideutone } \overline{d}$ $p + p \rightarrow p + p + p + p + n + \overline{n} + \overline{p} + \overline{p} \rightarrow \text{coalescenza in antielio}$ ³*He*

Antinuclei: la prossima milestone

Mai osservati nei raggi cosmici [\rightarrow AMS-02, GAPS]

 $p + p \rightarrow p + p + p + n + \overline{n} + \overline{p} \rightarrow \text{coalescenza in antideutone } \overline{d}$ $p + p \rightarrow p + p + p + p + n + \overline{n} + \overline{p} + \overline{p} \rightarrow \text{coalescenza in antielio}$ ³*He*

 $\chi + \chi \longrightarrow q \ \overline{q} \longrightarrow hadrons \longrightarrow X + \overline{n} + \overline{p} \longrightarrow coalescenza in antideutone \ \overline{d}$

Modello di coalescenza nucleare

 $pp \rightarrow p p p n \overline{p} \overline{n}$

$$E_A \frac{d^3 \sigma_A}{dp^3} = B_A \left(E_N \frac{d^3 \sigma_N}{dp^3} \right)_{p_N = p_N/A}^A$$

Standard coalescence model

Sezioni d'urto di produzione di anti-nucleoni Condizione affinché A antinucleoni formino uno stato legato: impulso p inferiore a pcoal.

Il modello si vincola con i dati sulla produzione di antideuterio pp-> dbar+X (ISR)

Scarsità di dati per l'antielio

- \rightarrow Estrapolazione da antideuterio
- \rightarrow Check su misure di p+Be or p+Al -> He-bar

anti-deuteron XS's

Oliva, NT, Feng PoS ICRC2017 (2018) 270

Predizione del flusso di antinuclei

The sub-GeV region is very promising to probe ~100 GeV scale DM

Propagation VS cross-section uncertainties

Oliva, NT, Feng PoS ICRC2017 (2018) 270

Raggi cosmici oltre il «modello standard»

I nuovi dati presentano numerose anomalie, che ci impongono a rivisitare le assunzioni e le semplificazioni dell'approccio standard (linearità, stazionarietà, omogeneità, isotropia)

- E se le collisioni CR+gas avvenissero anche *durante* l'accelerazione?
- E se l'accelerazione dei RC avvenisse anche durante il loro trasporto?
- E se ci fossero sorgenti di RC qui vicino?
- **o** E se il trasporto fosse diverso nelle differenti regioni della Galassia?
- E se la diffusione di particelle nell'eliosfera variasse nel tempo?
- E se la frammentazione dipendesse dall'energie?

Shock accelerated antiprotons?

Abbiamo ipotizzato che le collisioni p+p avvengono mentre i protoni vengono accelerati

- \rightarrow Si producono antiprotoni e antinuclei nelle SNR
- \rightarrow Anche l'antimateria viene accelerata in onde da shock
- ightarrow Questa nuova componente migliora la descrizione dei dati
- \rightarrow Impatto sui flussi antinuclei e nella ricerca di Materia Oscura

The curious case of high-energy deuterons

Abbiamo calcolato anche la produzione di deuterio nelle SNR

- \rightarrow Si produce un eccesso di isotopi di deuterio alle alte energie
- \rightarrow Si spiega la misura anomalia dei dati di SOKOL (ASR 2017)

Aspettiamo i dati di AMS-02

Nuova ipotesi: diffusione differente tra disco e alone

Nuova ipotesi: diffusione differente tra disco e alone

 $K(E,z) \neq f(z) \times k(E)$

Il coefficiente di diffusione K(z,E) non è più separabile nelle coordinate spazio/energia

Nuova ipotesi: diffusione differente tra disco e alone

Importanti conseguenze fenomenologiche! Si spiegano:

il cambio di pendenza osservato nello spettro dei protoni Il livello di anisotropia al TeV

ll gradiente nei raggi gamma

Si predicono:

Appiattimento del rapporti LiBeB/C
 Appiattimento antiprotoni/protoni

→ Effetti poi osservati da AMS

Con le nuove misure, tuttavia, sono emersi nuovi addizionali problemi...

Nuova ipotesi: sorgenti locali di raggi cosmici

- *Esplosione di SN avvenuta 2 Myr fa a pochi parsec di distanza da qui Contributo specific al flusso di raggi cosmici osservato qui ora*
- Questo scenario <u>potrebbe</u> risolvere varie anomalie in un colpo solo (eccesso di positroni, tensione antiprotoni/protoni, hardening spettrale di protoni ed elio...)

Particelle e antiparticelle nell'eliosfera: la modulazione solare

La propagazione dei raggi cosmici nell'eliosfera richiede modellizzazione a se stante L'effetto di «modulazione solare» dipende dal tempo, seguendo il ciclo solare 11-ennale

La sfida: combinare dati multi-canale e modelli numerici per capire:

- Evoluzione del flusso di raggi cosmici con la variabilità solare
- **Differenze nell'effetto di modulazione solare tra particelle e antiparticelle**
- □ Variazione del flusso nello spazio interplanetarie

Campo B interplanetario

Trasporto dei raggi cosmici attraverso la Il campo magnetico interplanetario

Particelle e antiparticelle nell'eliosfera: la modulazione solare

Raggi cosmici e antimateria: conclusioni

Nei raggi cosmici c'è tanta antimateria Possiamo usarla per cercare tracce di "nuova fisica"

Studiare l'origine dell'antimateria e spiegare le misure esistenti ci ha portato a nuove idee e maggiore comprensione sui meccanismi fisici dei raggi cosmici

Raggi cosmici e antimateria Teoria e modelli

Nicola Tomassetti Università degli Studi di Perugia

Ciclo PHP2020 Physics Highlights Perugia 15 Dicembre 2020 @ Perugia, Italy

Istituto Nazionale di Fisica Nucleare – Sezione di Perugia Università di Perugia / C.R.I.S.P. ASI-UniPG 2019-2-HH.0

209692003935313?s_bl=1&s_ps=1&s_sw=0&s_vt=api-s&a=AbwOc-falMYkI1X1

Ricerca di MO con antiprotoni: sommario

